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What a Neural Network
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How can we approximate such a function?

e Set of affine transformations: {f®,1 € 1,...,L|f® : R™-1 — R™}

e Non-linear element-wise activation function: ¢ : R — R
F(x) = f& (o (f&V (. (0 (fY (x))))))
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Feature fusion in CNNs

Fusing information is a recurrent problem in NNs:
e Combining information from different “branches”:

4 7 A4

74 4

N

Xie, S., Girshick, R, Dollar, P, Tu, Z, & He, K. (2017). Aggregated residual transformations for deep neural networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp. 1492-1500). Upﬂa
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Fusion functions

One of the most recurrent problems is the need to replace a set of
values by a single individual representative.

Any arbitrary function of the type F : [a,b]" — [a,b], with a,b € R
and a < b is called a fusion function.

A function A : [a,b]™ — [a, b] is an aggregation function if:

e Alisincreasing
° A(a,...,a) =aand A(b,...,b) =b
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Aggregation functions for feature fusion

Challenges faced in neural networks:

e Range of features is unbounded (real valued data).
® Aggregation functions require boundary conditions!
e \We have to choose the best aggregation.

® How can we consider interaction among data?
® Which data should we prioritise?
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Motivation

e Surprising lack of contributions from the information fusion
domain:

® Nowadays, some noteworthy proposals’?:2.

1 Zeiler, M. D., & Fergus, R. (2013). Stochastic pooling for regularization of deep convolutional neural networks, 7st International

Conference on Learning Representations, ICLR 2013, Scottsdale, United States.
28\, Q, Qin, K, Zhang, H., Xie, ], Li, Z,, & Xu, K. (2019). APDC-Net: Attention pooling-based convolutional network for aerial scene
classification. IEEE Geoscience and Remote Sensing Letters, 17(9), 1603-1607.

3Korlvolosy, R, Morad, S., & Prorok, A. (2023). Generalised f-mean aggregation for graph neural networks. Advances in Neural Information Upna
Processing Systems, 36, 34439-34450.
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Motivation

e Surprising lack of contributions from the information fusion
domain:
® Nowadays, some noteworthy proposals.
® Also coming from the aggregation theory field’-?:3.

1F0rcen,J I, Pagola, M., Barrenechea, E., & Bustince, H. (2020). Learning ordered pooling weights in image classification. Neurocomputing,
411, 45-53.

2Dommguez—(atena, 1, Paternain, D., & Galar, M. (2021). A study of OWA operators learned in convolutional neural networks. Applied
Sciences, 11(16), 7195.

3F0rroro—Jaumo[a, M., Takag, Z,, Fernandez, )., Horanska, L., Dimuro, G. P, Montes, S, ... & Bustince, H. (2022). VCI-LSTM: Vector Choquet Upna
integral-based long short-term memory. IEEE Transactions on Fuzzy Systems, 31(7), 2238-2250.
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e Surprising lack of contributions from the information fusion
domain:

® Nowadays, some noteworthy proposals.
® Also coming from the aggregation theory field.
e Results of the research were applied to COVID-19 prediction:

® Collaboration with Tracasa, Naitec and the University Hospital of
Navarra.
® Automatic analysis from chest x-ray scans using CNNs.
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Main objective

The main objective of this dissertation is to present new
methods for fusing the intermediate features of Convolu-
tional Neural Network architectures in the most efficient way
possible.
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Specific objectives

We will try to do so, by:

e Considering the coalition between neighbouring values through
fuzzy integrals.
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Specific objectives

We will try to do so, by:
e Considering the coalition between neighbouring values through
fuzzy integrals.

e Prioritising high activation values on feature maps through
grouping functions.

® Presenting a strategy to construct new pooling operators by
combining different functions in a coherent way.
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Specific objectives

We will try to do so, by:
e Considering the coalition between neighbouring values through
fuzzy integrals.

e Prioritising high activation values on feature maps through
grouping functions.

e Presenting a strategy to construct new pooling operators by
combining different functions in a coherent way.

e Presenting a full CNN pipeline for the detection of COVID-19
positive patients from x-ray scans.
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Publication 1

I ﬁ Neural Networks E

Replacing inC ional Neural Networks by )|
linear combinations of increasing functions

fosu Rodriguez-Martinez",Julio Lafuente, Regivan HN. Santiago"

Journal: Neural Networks
Status: Published.

JIF (JCR 2022): 7.8

JCR Ranking Categories:

® Computer Science, Artificial Intelligence:
28/145 (Q1)
® Neurosciences: 26/272 (Q1)

Rodriguez-Martinez, |., Lafuente, J.,, Santiago, R. H., Dimuro, G. P, Herrera, F, & Bustince, H. (2022).
Replacing pooling functions in Convolutional Neural Networks by linear combinations of upna
increasing functions. Neural Networks, 152, 380-393.
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Combination of pooling operators

® Choosing between max-pooling or avg-pooling is not direct.

e -v. Lee, P. Gallagher and Z. Tu (2018), Generalizing Pooling Functions in CNNs: Mixed, Gated, and upna
Tree, in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 863-875.
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® Choosing between max-pooling or avg-pooling is not direct.
e Combining both options yields better results!’
o f .(X)=a max? ; x+(1—a) Z::l x;, with o € [0, 1]

n

e -v. Lee, P. Gallagher and Z. Tu (2018), Generalizing Pooling Functions in CNNs: Mixed, Gated, and upna
Tree, in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 863-875.
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® The idea can be extended:

e -v. Lee, P. Gallagher and Z. Tu (2018), Generalizing Pooling Functions in CNNs: Mixed, Gated, and upna
Tree, in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 863-875.
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Combination of pooling operators

e Choosing between max-pooling or avg-pooling is not direct.
e Combining both options yields better results!
® friz(®) =a -max? x+(1—a) - 13" =z, witha€[0,1]
® The idea can be extended: — Using other aggregation functions
e {A, :]a,b]" — [a,b],i €{1,...,7}|A, is increasing and
A,(a) =a,A;(b) =b}
* f(x)= Z:Zl a; - A;(x)

e -v. Lee, P. Gallagher and Z. Tu (2018), Generalizing Pooling Functions in CNNs: Mixed, Gated, and upna
Tree, in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 863-875.

Modification of information reduction pi n Convolutional Neural N



Introduction Motivation and objectives Discussion of research findings Conclusic Future research lines

Combination of pooling operators

e Choosing between max-pooling or avg-pooling is not direct.
e Combining both options yields better results!
® frie(x)=a-max; x+(1—a)- 23"z, witha € [0,1]
e The idea can be extended: — Using other fusion functions
e {A :]a,b]" — [a,b],i€{1,....,7}}
* fx) =X - Ayx)

e -v. Lee, P. Gallagher and Z. Tu (2018), Generalizing Pooling Functions in CNNs: Mixed, Gated, and upna
Tree, in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 863-875.
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Combination of pooling operators

e Choosing between max-pooling or avg-pooling is not direct.

e Combining both options yields better results!
® frie(x)=a-max; x+(1—a)- 23"z, witha € [0,1]

e The idea can be extended: — Using other increasing functions
o {4,:R" = R,ie{l1,..,r}A4, isincreasing}
* fx) =X - Ayx)

e -v. Lee, P. Gallagher and Z. Tu (2018), Generalizing Pooling Functions in CNNs: Mixed, Gated, and upna
Tree, in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 863-875.
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Fuzzy integrals

Allow to weigh the coalition among data through a fuzzy measure.

Let M = {1,...,n}. A discrete fuzzy measure on V is a map
v: 2N — [0, 400) such that

* v(®) =0,
® SCT CNimplies v(S) <v(T)

upna
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Fuzzy integrals (I1)

Given a fuzzy measure, the Sugeno fuzzy integral is given by:

The discrete Sugeno integral S, : R® — R with respect to a fuzzy
measure v : 2V — [0, +00) is given by

S,(x) = max min{x(i),V(H-)},

9
i=1,...,n

where x » = (z1), Z(g), .-, T(y,)) IS N increasing permutation of x
and H; = {(@), ..., (n)}.

upna
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Generalized Sugeno integral

e \We also test generalized forms of the Sugeno integral?.

Let M = {1,...,n} and let U be a connected subset of R such that
0 € U. A U-fuzzy measure on V is a map v : 2 — U such that

* v(0) =0,
e SCT C N implies v(S) < v(T)

zBardozzo, F, De La Osa, B., Horanska, L., Fumanal-ldocin, J., delli Priscoli, M., Troiano, L., ... &
Bustince, H. (2021). Sugeno integral generalization applied to improve adaptive image binarization. UpNa
Information Fusion, 68, 37-45.
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Generalized Sugeno integral

e \We also test generalized forms of the Sugeno integral?.

Let U and [ be two connected subsets of R such that 0 € U C I. Let
v: 2V — U be a U-fuzzy measure. We say that the maps
F:lxU—=1land G : 1™ — U are v-admissible if the map A : I™ — [
given, for z,,...,z,, €1, by

A(xla ) CUn) = G(F(xo(l)v V(ng))v ) F(ma(n)a V(Ng)))’

where o € x( » and N7 = {o(i), ..., a(n)}, is well defined. Then we
set A = A(F,G,v) and name it the Sugeno-like (F, G, v)-function.

zBardozzo, F, De La Osa, B., Horanska, L., Fumanal-ldocin, J., delli Priscoli, M., Troiano, L., ... &
Bustince, H. (2021). Sugeno integral generalization applied to improve adaptive image binarization. UpNa
Information Fusion, 68, 37-45.
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Generalized Sugeno integral (I11)

n

Using G(x) = .., =, F(z,y) = = -y and a symmetrical fuzzy
measure v we obtain the Sugeno-like (I, 3, v)-function given by

n

D,(x) = Z%(i) - v(NY)

=1

upna
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Combining increasing functions

e \We test several functions:
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Combining increasing functions

e \\e test several functions:
® Maximum and arithmetic mean
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Combining increasing functions

e \\e test several functions:

® Maximum and arithmetic mean
® Order statistics
® Sugeno integral
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e We test several functions:
® Maximum and arithmetic mean
® QOrder statistics
® Sugeno integral
® Sugeno-like (F,G,v)-functions
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Combining increasing functions

e \\e test several functions:

® Maximum and arithmetic mean
® QOrder statistics
® Sugeno integral
® Sugeno-like (F, G,v)-functions

e And we want to combine them
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Combining increasing functions

® Ve test several functions:
® Maximum and arithmetic mean
® QOrder statistics
® Sugeno integral
® Sugeno-like (F, G,v)-functions
e And we want to combine them

® Preserving monotonicity
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Combining increasing functions

® Ve test several functions:
® Maximum and arithmetic mean
® QOrder statistics
® Sugeno integral
® Sugeno-like (F, G,v)-functions
e And we want to combine them

® Preserving monotonicity
® Certain restrictions must be enforced

upna
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But is monotonicity (increasingness) important anyway?
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Enforcing monotonicity

Let Aq,..., A, : R — R be increasing functions. We denote
J(Ay, . A) ={(og,...,a,) ER?YT_ oA : R" —» Risan
increasing function}

upna
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Enforcing monotonicity

Let Aq,..., A, : R — R be increasing functions. We denote
J(Ay, . A) ={(og,...,a,) ER?YT_ oA : R" —» Risan
increasing function}

Consider iy, ...,i,. € 1,...,n,i; < -+ <i.,r <n. Then, for all order
statistics OS, , ..., OS, , it holds that

J(AM,0S, ,...,0S; ) = {(a, By, ..., Bp)la, @ + npy, ..., + nB, > 0}.

upna
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Enforcing monotonicity (I1)

Let v : 2V — [0, +00) be a fuzzy measure. If ay, ..., a,,, a,, + 5 >0,
then for all order statistics OS, ,...,0S; and Sugeno integral S,,
a;,0S; + -+ «,,0S,, is increasing. If S, a;0S; + -+ + ,,0S,, is
increasing and v is strict in k € V, then o, + 8 > 0; hence if v is
strict, we have that

J(0S,,...,0S,,,S,) = {(ay,...,a,, B)|a,a + npy,...,a +np, > 0}.

upna
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Enforcing monotonicity (I1)

Let v : 2V — [0, 4+00) be a fuzzy measure. If ay, ..., a,,, o, + B >0,
then for all order statistics OS, ,...,0S; and Sugeno integral S,,
a;,0S; + -+ «,,0S,, is increasing. If S, a;0S; + -+ + ,,0S,, is
increasing and v is strict in k € V, then o, + 8 > 0; hence if v is
strict, we have that

J(0S,,...,0S,,,S,) = {(ay,...,a,, B)|a,a + npy,...,a +np, > 0}.

Let v : 2V — [0, 4+00) be a fuzzy measure. We have

J(AM;S,) = {(a, B)|e, a, e + 0B > 0}.

upna
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Enforcing monotonicity (I11)

We can guarantee monotonicity for all possible combinations by
learning positive coefficients:

T a2l gl
. —iafylt =y
o @ 2

Ay (XM =yit )
11 T12 As(XM) =yt
X1 = = .

An(XT) =yt

upna
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Enforcing monotonicity (I11)

We can guarantee monotonicity for all possible combinations by
learning positive coefficients:

i i 1]
|21 T2 |

Ay (XM =yit )
T T2 Ax(XM) =y3!
n_ T o201 gl
255 || o @ IF . Yiciadyll =y

An(XT) =yt

We name the proposal CombPool layers upna
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Experimental framework: Models

C3: 1. maps 16@10x10
— C1: feature maps. $4:1. maps 16@5x5
32432 6@26:28

| Full connection Gaussian connections
Full connection

Network in Network‘*‘

3‘/ LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11) (1998),
2278-2324.

ALm, M., Chen, Q. and Yan, S. (2014) Network in Network. 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Upna
14-16 April 2014.
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Input
Prediction
2 Dense Block 1 2 Dense Block 2
2 =
o |=zl= S HIREL »{8
| o i e
g H
DenseNet °
: Worr, Warn
o1l Wi, 1/32, 132 WoTot, | % 4
} ; i : ¢ g
[ head 1 Al stage 4 Al block d; | ‘ [ el | el |
T T | T
Wy, 1/32,1/32 ! Wb, 1,1, w/b, 1.1,
bod; stage 2 block 2 3 3x3, g, 5= 3x3, g, s=2 x1,s=2
(TR || BTSN | BTSN | BT e ][
Wy, /4, 14 Waret, 1 Wbyt r, Wb, 20, 2r,
1 t 4 1 L
| stage | | | block 1 ] A | 1x1, =1 | 1x1,5=1 |
T T ' 1 k3
W /2,72 Wi 26,26, ! T o 2n
(b) body (©) stage i ! (a) % block, s=1 (b) % block, s=2

SHuang, G, Liu, Z, Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE

conference on computer vision and pattern recognition (pp. 4700-4708)

6Rado€avowc, 1., Kosaraju, R. P, Girshick, R, He, K, & Dollar, P. (2020). Designing network design spaces. In Proceedings of the IEEE/CVF Upna
conference on computer vision and pattern recognition (pp. 10428-10436),
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Dataset Train Test Classes  Colour  Description

MNIST 60000 10000 10 No Digits from 0 to 9
Fashion MNIST 60000 10000 10 No Clothing categories
Balanced EMNIST 112800 18800 47 No Digits and characters
CIFAR10 50000 10000 10 Yes Real life images
CIFAR100 50000 10000 100 Yes Real life images

Modification of information reduction pi
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Experimental results

FASHION dataset

LeNet-5 NiN DenseNet
Ist Best AM Min D, + Min + Max + Median
Accuracy  93.24 93.03 93.79
2nd Best S, + AM Max AM
Accuracy  93.21 92.99 93.79
3rdBest D, S, AM + Max
Accuracy  93.05 92.67 93.63

EMNIST dataset

LeNet-5 NiN DenseNet
1st AM D, S, + AM
Accuracy  87.58 89.27 90.03
2nd Min + Max + Median Max D, + Max
Accuracy  87.52 89.11 89.97
3rd D, + Min + Max + Median D, + Max D, + Min + Max + Median

Accuracy  87.46 89.09 89.85

ification of inf
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CIFAR10 dataset

LeNet-51 NiN DenseNet
1st D, + Min+ Max D, D, + AM
Accuracy  77.81 88.70 89.87
2nd Max D, + Min + Max D, + Min + Max
Accuracy  77.39 88.61 89.83
3rd S, + Min + Max D, + Min AM + Min + Max + Median
Accuracy  77.30 88.51 89.83

CIFAR100 dataset

LeNet-51 NiN DenseNet
Ist AM Max AM
Accuracy  46.55 57.58 70.78
2nd S, + AM S, + Min + Max + Median D, + Min + Max
Accuracy  46.46 56.08 70.31
3rd S, + Max AM + Min + Max + Median ~ Min + Max + Median
Accuracy  46.37 55.98 70.21
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Other coefficient learning strategies

e Direct optimization of mixing coefficients can be improved

upna
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Other coefficient learning strategies

e Direct optimization of mixing coefficients can be improved:
® CombPool layers are agnostic to coefficient optimization
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Other coefficient learning strategies

e Direct optimization of mixing coefficients can be improved:

® CombPool layers are agnostic to coefficient optimization
® ¢ g using Gated CombPool layers’

fmix (X) j‘guw (X)

cv. Lee, P. Gallagher and Z. Tu (2018), Generalizing Pooling Functions in CNNs: Mixed, Gated, and upna
Tree, in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 863-875.
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Other coefficient learning strategies

® Direct optimization of mixing coefficients can be improved:

® CombPool layers are agnostic to coefficient optimization
® ¢ g using Gated CombPool layers

Table 1: Accuracy rate for DenseNet-101 over CIFART0 dataset

Method Accuracy

Mixed AM + Max 86.99
Mixed D, + AM  89.87

Gated AM + Max 90.41
Gated D, + AM  90.89

upna
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Other coefficient learning strategies

e Direct optimization of mixing coefficients can be improved:

® CombPool layers are agnostic to coefficient optimization
® ¢ g choosing the best function through penalty-based functions

X1
] B
L T11 | T12 | fC13 g

i T i [IeTH
| T21 | T22 |fT23 ) 24 N U

Ay(XM) =it = P(XM 1Y)

G @ Ag(X1) = yll o5 P(XL, gt
P ( 11 12 ) 2 )=u3 ( y3') 3 111‘i‘nP(X“,yfl) _ y”
: ui

T21 22

A = it o PXL Y

Bustince, H., Beliakov, G., Dimuro, G. P, Bedregal, B., & Mesiar, R. (2017). On the definition of penalty functions in data aggregation. Fuzzy Upna
Sets and Systems, 323, 1-18
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Other coefficient
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learning strategies

® Direct optimization of mixing coefficients can be improved:

® CombPool layers are agnostic to coefficient optimization
® ¢ g combining functions according to penalty-based functions

X

R .
| T11 T12 13

i S
A

22

] )
T

x“:(

A(X) =yl = P(X, 1)
T Ti2 ) Ap(XM) =yt - P(X1, ydY)

T21 T2

AL =gl - P(X )
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CombPool layers for Global Pooling

We also replace Global Average Pooling by Global CombPool layers

Feature extraction — —*}D «e [)

{

ne

upna
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CombPool layers for Global Pooling

We also replace Global Average Pooling by Global CombPool layers

fo(x) = A(xW)

Feature extraction — —*}D «e [)

upna
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Experimental results: global CombPool layers

CIFAR-10 CIFAR-100
NiN  DenseNet RegNetX  NiN  DenseNet RegNetX
AM 86.11 91.08 94.13 57.16 70.97 74.95
Max + AM 86.97 91.29 93.77 57.23 68.79 71.43
Maz + S, 83.04 91.28 93.40 50.96 65.40 58.96
Maz+D,  85.99 90.26 93.27 52.85 66.54 66.66
AM +S8S, 86.58 91.00 94.25 57.72 69.68 74.30
AM +D, 86.33 91.08 93.51 52.71 69.10 71.43

Modification of information reduction pro in Convolutional Neural Net
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Summary of paper 1

e CombPool layers are a solid strategy to combine different
reductions

® Better effect in more complex models
e Global pooling benefits from including the arithmetic mean
e Test averaging functions (e. g. Moderate Deviation functions).
e D, offers competitive results
® |earn aggregation functions from affine transformations’

"de Hierro, A. F. R. L, Roldan, C,, Bustince, H., Fernandez, J., Rodriguez, |, Fardoun, H., & Lafuente, .
(2021). Affine construction methodology of aggregation functions. Fuzzy Sets and Systems, 414, upna
146-164.
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Introductio

Publication 2

FullLengih Aricle )

e
Neural Networks
M

a’, Zdenko Takic

Journal: Information Fusion
Status: Published.

JIF (JCR 2023): 14.7

JCR Ranking Categories:

® Computer Science, Artificial Intelligence:
4/197 (Q1)

® Computer Science, Theory & Methods:
2/143 (Q1)

Rodriguez-Martinez, |, da Cruz Asmus, T, Dimuro, G. P, Herrera, F, Takac, Z,, & Bustince, H. (2023).
Generalizing max pooling via (a, b)-grouping functions for Convolutional Neural Networks. upna
Information Fusion, 99, 101893.
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Motivation

® |n practice, the maximum is @ more common pooling operator
than the arithmetic mean

8da Cruz Asmus, T., Dimuro, G. P, Bedregal, B., Sanz, J. A, Fernandez, J., Rodriguez-Martinez, I.,
Mesiar, R., & Bustince, H. (2022). A constructive framework to define fusion functions with floating upna
domains in arbitrary closed real intervals. Information Sciences, 610, 800-829.
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Motivation

® |n practice, the maximum is @ more common pooling operator
than the arithmetic mean

® Most of the aggregated information is ignored

8da Cruz Asmus, T., Dimuro, G. P, Bedregal, B., Sanz, J. A, Fernandez, J., Rodriguez-Martinez, I.,
Mesiar, R., & Bustince, H. (2022). A constructive framework to define fusion functions with floating upna
domains in arbitrary closed real intervals. Information Sciences, 610, 800-829.
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Motivation

® |n practice, the maximum is @ more common pooling operator
than the arithmetic mean
® Most of the aggregated information is ignored
® Highest activations are preserved!

8da Cruz Asmus, T., Dimuro, G. P, Bedregal, B., Sanz, J. A, Fernandez, J., Rodriguez-Martinez, I.,
Mesiar, R., & Bustince, H. (2022). A constructive framework to define fusion functions with floating upna
domains in arbitrary closed real intervals. Information Sciences, 610, 800-829.
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Motivation

® |n practice, the maximum is @ more common pooling operator
than the arithmetic mean

® Most of the aggregated information is ignored
® Highest activations are preserved!

e Hypothesis: The “disjunctive” behaviour is the key

8da Cruz Asmus, T., Dimuro, G. P, Bedregal, B., Sanz, J. A, Fernandez, J., Rodriguez-Martinez, I.,
Mesiar, R., & Bustince, H. (2022). A constructive framework to define fusion functions with floating upna
domains in arbitrary closed real intervals. Information Sciences, 610, 800-829.
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Motivation

® |n practice, the maximum is @ more common pooling operator
than the arithmetic mean

® Most of the aggregated information is ignored
® Highest activations are preserved!
e Hypothesis: The “disjunctive” behaviour is the key

® Multiple families of aggregations with this behaviour: t-conorms,
grouping functions...

8da Cruz Asmus, T., Dimuro, G. P, Bedregal, B., Sanz, J. A, Fernandez, J., Rodriguez-Martinez, I.,
Mesiar, R., & Bustince, H. (2022). A constructive framework to define fusion functions with floating upna
domains in arbitrary closed real intervals. Information Sciences, 610, 800-829.
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Motivation

® |n practice, the maximum is @ more common pooling operator
than the arithmetic mean
® Most of the aggregated information is ignored
® Highest activations are preserved!

e Hypothesis: The “disjunctive” behaviour is the key

® Multiple families of aggregations with this behaviour: t-conorms,
grouping functions...
® Preliminary promising results using t-conorms®

8da Cruz Asmus, T., Dimuro, G. P, Bedregal, B., Sanz, J. A, Fernandez, J., Rodriguez-Martinez, I.,
Mesiar, R., & Bustince, H. (2022). A constructive framework to define fusion functions with floating upna
domains in arbitrary closed real intervals. Information Sciences, 610, 800-829.
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(a, b)-aggregation functions

® |n practice, we can usually restrict the range of values to an
interval [a,b], witha < b € R

a=min(x") i b =max(X")

Count

upna
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(a, b)-aggregation functions

e |n practice, we can usually restrict the range of values to an
interval [a,b], witha < b € R

a=qon(X") N

b= qo.ss(X")

upna
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Restricting the range of values

® Ensuring properties of aggregation functions are preserved in
[a, b] is important

upna
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Restricting the range of values

e Ensuring properties of aggregation functions are preserved in
[a, b] Is important!

A function O : [0,1]™ — [0, 1] is said to be an overlap function if, for
all x € [0,1]™, the following conditions hold:
© O is symmetric;

® O(x) =0 < I z; = 0;
OO0x) =1« Iz, =1,
O O is increasing;
® O is continuous;

9Bustince, H., Fernandez, )., Mesiar, R, Montero, J., & Orduna, R. (2010). Overlap functions. Nonlinear
Analysis: Theory, Methods & Applications, 72(3-4), 1488-1499. upna
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Restricting the range of values

e Ensuring properties of aggregation functions are preserved in
[a, b] Is important!

A function 0@ : [a, b]™ — [a, b] is said to be an (a, b)-overlap
function if, for all x € [a, b]™, the following conditions hold:
@ O is symmetric;

@ 0“Y(x) =a « Jz, € xsuchthatz, =g,
© 0V (x)=b < Vz, ex,z;,=0b,
O 0@ is increasing;

© O@Y) is continuous;

%da Cruz Asmus, T, Dimuro, G. P, Bedregal, B, Sanz, J. A, Fernandez, J., Rodriguez-Martinez, |, Mesiar,
R., & Bustince, H. (2022). A constructive framework to define fusion functions with floating domains upna
in arbitrary closed real intervals. Information Sciences, 610, 800-829.
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(a,b)-grouping functions

A function G(@ : [a,b]” — [a, ] is said to be an (a,b)-grouping
function if, for all x € [a, b]™, the following conditions hold:

© G is symmetric;

@O G (x)=a < Vr, €x,7, = q;

O G“Y(x)=b < 3Jr; € xsuchthatxz, =b;
O G s increasing;

©® G s continuous;

upna
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Construction methods for (a, b)-grouping functions

Note: Not all grouping functions are (a, b)-grouping functions:

® e g G(x) = (max(x))P Is a grouping function but not an
(a,b)-grouping function

upna
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Construction methods for (a, b)-grouping functions

Note: Not all grouping functions are (a, b)-grouping functions:

® e g G(x) = (max(x))P Is a grouping function but not an
(a,b)-grouping function

Given a function G : [0,1]™ — [0,1], an increasing and bijective
function ¢ : [a,b] — [0, 1] and an (a, b)-fusion function
G : [a,b]" — [a,b] given, for all xy, ..., € [a,b] by

Gt (x) = ¢ HG(p(xy), ..., B(x,))),
Then, G** is an n-dimensional (a, b)-grouping function if and only

if G is an n-dimensional grouping function.
upna
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Construction methods for (a, b)-grouping functions (II)

Given G» = {G%?, ..., G%P} and GC*?, (a,b)-grouping functions, we
also have the following constructions

e Convex combination of (a, b)-grouping functions:

AWE? (%) = w, G (X) + - + w,, Gy (%)

upna
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Construction methods for (a, b)-grouping functions (II)

Given G» = {G%?, ..., G%P} and GC*?, (a,b)-grouping functions, we
also have the following constructions

e Convex combination of (a, b)-grouping functions:
AWEL (%) = w, Gy (x) + -+ + W, Gy (%)

e Composition of (a,b)-grouping functions:

GCE ,(x) = GC®" (G (%), ..., Gy (%))

upna
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Experimental framework: Tested expressions

Name  Core function

G?n;ljzz mam (X) max? 1%
n
G;’rod [)7 od (X) 1— HL 1 (1 B 171)

Gicl;)m GJeOTrL (X) m
e —1- \/mmf (== I, (1)

Ga,b @ — max;'
w u<X) max}_; + T\L/Hlll(lf:r:i)

upna
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Experimental framework: results

CIFAR-10 CIFAR-100
VGG16 ResNet VGG16 ResNet
Avg 0.915 4+ 0.001 0.919 £ 0.004 0.682 +0.002/0.891 + 0.004 0.681 + 0.007/0.902 = 0.005
Max 0.911 4+ 0.003 0.919 4 0.003 0.676 + 0.003/0.888 + 0.004 0.681 + 0.005/0.898 + 0.004
G;’”,’:“, 0.912 + 0.003 0.918 + 0.004 0.678 + 0.004/0.889 + 0.004 0.664 + 0.014/0.891 + 0.010
}::,’)b 0.915 4+ 0.002  0.918 4+ 0.002 0.680 + 0.001/0.891 4 0.003 0.684 +0.018/0.902 + 0.004
AIV’[,';-;;»:PI:M ) 0.914 4+ 0.002 0.914 4 0.008 0.679 + 0.002/0.890 + 0.001 0.674 +0.016/0.898 + 0.009
A”’Y;HC‘,‘::L{;, G5h) 0.914 4+ 0.001  0.923 4 0.001 0.679 + 0.004/0.891 + 0.002 0.671 + 0.007/0.898 + 0.005
G¥e 0.913+0.001 0.919+0.004  0.678 + 0.003/0.888 + 0.002 0.665 4 0.019/0.890 + 0.020
)
12,,':“ o , 0.914 + 0.001 0.900 4+ 0.016  0.681 4 0.002/0.889 4 0.001 0.669 + 0.027,/0.894 + 0.006
Ghite Gop
9

on of inform
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CIFAR-10

VGG16

ResNet

CIFAR-100

VGG16

ResNet

0.915 + 0.001
0.911 + 0.003
0.912 + 0.003
0.915 + 0.002

0.919 + 0.004
0.919 + 0.003
0.918 + 0.004

0.918 + 0.002

0.682 + 0.002/0.891 + 0.004
0.676 + 0.003/0.888 + 0.004
0.678 + 0.004/0.889 + 0.004
0.680 + 0.001/0.891 4 0.003

0.681 + 0.007/0.902 = 0.005

0.681 + 0.005/0.898 + 0.004

0.664 + 0.014/0.891 + 0.010
0.684 + 0.018/0.902 + 0.004

b qab
roa:Gob )

b
)

Bof®

Gob

0.914 + 0.002
0.914 + 0.001

0.914 + 0.008
0.923 + 0.001

0.679 4+ 0.002/0.890 + 0.001
0.679 + 0.004/0.891 + 0.002

0.674 +0.016/0.898 + 0.009
0.671 + 0.007/0.898 =+ 0.005

Gu.b

maz,
Gub  gab,

prod

a,b
Tprod

555

jab  gab
Gz Goj

0.913 + 0.001
0.914 4 0.001

0.919 + 0.004

0.900 + 0.016

0.678 + 0.003/0.888 + 0.002
0.681 + 0.002/0.889 + 0.001

0.665 + 0.019/0.890 + 0.020
0.669 + 0.027/0.894 + 0.006

Mixed pooling
Gated pooling
Attention pooling®

0.916 + 0.002
0.913 4+ 0.003
0.884 4+ 0.008

0.922 4+ 0.002
0.922 4+ 0.002
0.923 + 0.003

0.683 + 0.002/0.892 + 0.002
0.682 + 0.003/0.892 + 0.001
0.614 + 0.006/0.850 + 0.008

0.680 + 0.002/0.901 + 0.001
0.686 + 0.003/0.901 + 0.003
0.681 + 0.005/0.903 + 0.004

9Bi, Q, Qin, K, Zhang, H., Xie, J., Li, Z., & Xu, K. (2019). APDC-Net: Attention pooling-based
convolutional network for aerial scene classification. IEEE Geoscience and Remote Sensing Letters,
17(9), 1603-1607.
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Effect of (a, b)-grouping functions

Activations generated by pooling functions

Gradients through pooling functions (2 < 2)

Max Avg
Max Avg
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2!
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Mitigating exploding gradient with the arithmetic mean

CIFAR-10

VGG16

ResNet

CIFAR-100

VGG16

ResNet

Avg
Max
Best grouping

0.915 4+ 0.001
0.911 4+ 0.003
0.916 + 0.002

0.919 + 0.004
0.919 + 0.003
0.923 + 0.001

0.682 + 0.002/0.891 + 0.004
0.676 + 0.003/0.888 + 0.004
0.681 + 0.002/0.889 - 0.001

0.681 + 0.007/0.902 + 0.005
0.681 + 0.005/0.898 + 0.004
0.684 + 0.018,/0.902 4 0.004

Mixed pooling
AW "‘" o
vg,G%P)

Aweb

1vg,G%0 1)

0.916 + 0.002
0.914 4 0.001

0.915 + 0.001

0.922 + 0.002
0.921 + 0.002

0.923 + 0.002

0.683 + 0.002/0.892 + 0.002
0.681 4 0.001/0.893

0.681 + 0.003/0.892 4 0.001

0.001 0.684 + 0.002/0.904

0.680 + 0.002/0.901 4 0.001
0.005
0.677 -+ 0.012/0.900 + 0.006
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Summary of paper 2

® (a,b)-grouping functions generalize max-pooling
® While improving gradient flow

e Some expressions can incur in exploding gradient problems
® Solvable with gradient clipping/mixed pooling

e Competitive with more complex alternatives
® Requires no additional parameters

Modification of information reduction pi
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Publication 3

AR ST —— ) e Journal: Expert Systems with
Applications
e Status: Published.
e JIF(JCR2023): 75
e JCR Ranking Categories:

® Computer Science, Artificial Intelligence:
24/197 (Q1)

® Engineering, Electrical & Electronic:
25/352 (Q1)

Rodriguez-Martinez, |., Ursua-Medrano, P, Fernandez, )., Takac, Z., & Bustince, H. (2024). A study on
the suitability of different pooling operators for Convolutional Neural Networks in the prediction of UPNa
COVID-19 through chest x-ray image analysis. Expert Systems with Applications, 235, 121162.
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Motivation

Joint effort between Tracasa Instrumental, Naitec, the University Hospital of Navarre
and the Public University of Navarre. Compute power was provided by Nasertic

IT tracasa  UPNA

1 11
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Dataset

e High proliferation of CXR-datasets during the early steps of the
outbreak™

10Cohen, J. P, Morrison, P, & Dao, L. (2020). COVID-19 image data collection. arXiv preprint upna
arXiv:200311597.
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Dataset

e High proliferation of CXR-datasets during the early steps of the
outbreak™

e Several problems:
e Samples taken with different equipment/machinery.
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Dataset

e High proliferation of CXR-datasets during the early steps of the
outbreak™
e Several problems:

e Samples taken with different equipment/machinery.
® Mix-up of PosteroAnterior (PA) and AnteroPosterior (AP) scans.

10Cohen, J. P, Morrison, P, & Dao, L. (2020). COVID-19 image data collection. arXiv preprint upna
arXiv:200311597.
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Dataset

e High proliferation of CXR-datasets during the early steps of the
outbreak™
e Several problems:

e Samples taken with different equipment/machinery.
® Mix-up of PosteroAnterior (PA) and AnteroPosterior (AP) scans.
® Non-reliable annotations.

10Cohen, J. P, Morrison, P, & Dao, L. (2020). COVID-19 image data collection. arXiv preprint upna
arXiv:200311597.

Modification of information reduction p n Convolutional Neural N 49/64



Introduction Motivation and objectives Discussion of research findings Conclusic Future research lines

Dataset

e High proliferation of CXR-datasets during the early steps of the
outbreak™

e Several problems:

e Samples taken with different equipment/machinery.

® Mix-up of PosteroAnterior (PA) and AnteroPosterior (AP) scans.
® Non-reliable annotations.

® Extreme unbalance with respect to COVID-19 cases.

10Cohen, J. P, Morrison, P, & Dao, L. (2020). COVID-19 image data collection. arXiv preprint upna
arXiv:200311597.

Modification of information reduction p n Convolutional Neural N 49/64
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Dataset

e High proliferation of CXR-datasets during the early steps of the
outbreak™

® We use the COVIDGR dataset™.

0¢cohen, J. P, Morrison, P, & Dao, L. (2020). COVID-19 image data collection. arXiv preprint
arXiv:2003.11597.
MTabik, S., Gdmez-Rios, A., Martin-Rodriguez, J. L., Sevillano-Garcia, I., Rey-Area, M., Charte, D,, ... &

Herrera, F. (2020). COVIDGR dataset and COVID-SDNet methodology for predicting COVID-19 based  UpNA
on chest X-ray images. IEEE journal of biomedical and health informatics, 24(12), 3595-3605.
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Dataset

e High proliferation of CXR-datasets during the early steps of the
outbreak™
e We use the COVIDGR dataset™.

® Data collection in collaboration with Hospital Universitario Clinico
San Cecilio from Granada.

0¢cohen, J. P, Morrison, P, & Dao, L. (2020). COVID-19 image data collection. arXiv preprint

arXiv:2003.11597.

MTabik, S., Gdmez-Rios, A., Martin-Rodriguez, J. L., Sevillano-Garcia, I., Rey-Area, M., Charte, D,, ... &

Herrera, F. (2020). COVIDGR dataset and COVID-SDNet methodology for predicting COVID-19 based  UpNA
on chest X-ray images. IEEE journal of biomedical and health informatics, 24(12), 3595-3605.
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Introduction

Dataset

e High proliferation of CXR-datasets during the early steps of the
outbreak™
e We use the COVIDGR dataset™.
® Data collection in collaboration with Hospital Universitario Clinico

San Cecilio from Granada.
® Annotations based on RT-PCR test and expert radiologist

evaluation.

0¢cohen, J. P, Morrison, P, & Dao, L. (2020). COVID-19 image data collection. arXiv preprint

arXiv:2003.11597.

MTabik, S., Gdmez-Rios, A., Martin-Rodriguez, J. L., Sevillano-Garcia, I., Rey-Area, M., Charte, D,, ... &

Herrera, F. (2020). COVIDGR dataset and COVID-SDNet methodology for predicting COVID-19 based  UpNA
on chest X-ray images. IEEE journal of biomedical and health informatics, 24(12), 3595-3605.
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Dataset

e High proliferation of CXR-datasets during the early steps of the
outbreak™

e We use the COVIDGR dataset™.

® Data collection in collaboration with Hospital Universitario Clinico
San Cecilio from Granada.

® Annotations based on RT-PCR test and expert radiologist
evaluation.

® Homogeneous procedure for scan generation.

0¢cohen, J. P, Morrison, P, & Dao, L. (2020). COVID-19 image data collection. arXiv preprint

arXiv:2003.11597.

MTabik, S., Gdmez-Rios, A., Martin-Rodriguez, J. L., Sevillano-Garcia, I., Rey-Area, M., Charte, D,, ... &

Herrera, F. (2020). COVIDGR dataset and COVID-SDNet methodology for predicting COVID-19 based  UpNA
on chest X-ray images. IEEE journal of biomedical and health informatics, 24(12), 3595-3605.
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Dataset

e High proliferation of CXR-datasets during the early steps of the
outbreak™

e We use the COVIDGR dataset™.

® Data collection in collaboration with Hospital Universitario Clinico
San Cecilio from Granada.

® Annotations based on RT-PCR test and expert radiologist
evaluation.

® Homogeneous procedure for scan generation.

® 852 images: 426 positive / 426 negative.

0¢cohen, J. P, Morrison, P, & Dao, L. (2020). COVID-19 image data collection. arXiv preprint

arXiv:2003.11597.

MTabik, S., Gdmez-Rios, A., Martin-Rodriguez, J. L., Sevillano-Garcia, I., Rey-Area, M., Charte, D,, ... &

Herrera, F. (2020). COVIDGR dataset and COVID-SDNet methodology for predicting COVID-19 based  UpNA
on chest X-ray images. IEEE journal of biomedical and health informatics, 24(12), 3595-3605.
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Segmentation

Original CLAHE ‘
[ [ S |

Deconv Deconv

iyl

Ronneberger, O, Fischer, P, & Brox, T. (2015). U-net: Convolutional networks for biomedical image
segmentation. In Medical image computing and computer-assisted intervention-MICCAI 2015: 18th
international conference, Munich, Germany, October 5-9, 2015, proceedings, part I11 18 (pp. 234-241). upna
Springer International Publishing.
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Evaluation metrics
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Positive Negative Evaluation metric Expression
TP+TN
: - Accuracy rate TPFTN+FPTFN
s rue Positive False Positive
v & -
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< I Precision TSED,
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Experimental framework

e Model: DenseNet-121
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Experimental framework

e Model: DenseNet-121
e Pooling layers tested:
®* Max-pool and avg-pool
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Experimental framework

e Model: DenseNet-121
e Pooling layers tested:

® Max-pool and avg-pool
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Experimental framework

e Model: DenseNet-121
e Pooling layers tested:

® Max-pool and avg-pool
® QOrder statistics and sum
® Choquet and Sugeno integral
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Experimental framework

e Model: DenseNet-121
e Pooling layers tested:

® Max-pool and avg-pool

® Order statistics and sum

® Choquet and Sugeno integral

® D, Sugeno-like (II, 3, v)-function
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Experimental framework

e Model: DenseNet-121

® Pooling layers tested:
® Max-pool and avg-pool
® Order statistics and sum
® Choquet and Sugeno integral
® D, Sugeno-like (IL, X, v)-function
® (a,b)-grouping functions
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Experimental framework

e Model: DenseNet-121
® Pooling layers tested:

® Max-pool and avg-pool

® QOrder statistics and sum

® Choquet and Sugeno integral

® D, Sugeno-like (IL, X, v)-function
(a,b)-grouping functions
CombPool layers
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Experimental framework

e Model: DenseNet-121
e Pooling layers tested:

® Max-pool and avg-pool

® Order statistics and sum

® Choquet and Sugeno integral

® D, Sugeno-like (IL, X, v)-function
® (a,b)-grouping functions

® CombPool layers

e Metrics report the mean of 5 independent 5-fold cross validated
tests per model.

upna
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Table 2: Mean results for models which use individual functions.

Pooling Positive class FEREE
Function Precision Recall F1

AM 0.743 + 0.038 0.697 +0.057 0.717 + 0.032 | 0.726 4+ 0.026
Max 0.7334+0.035 0.678 £0.073 0.701 +0.044 | 0.714 4+ 0.031
Min 0.729 + 0.052  0.688 +0.064  0.705+ 0.030 | 0.712 4 0.028
Median 0.741 + 0.035 0.702 4+ 0.060  0.705 4+ 0.030 | 0.727 + 0.029
Sum 0.7394+0.042 0.707 +£0.053 0.720 + 0.026 | 0.726 + 0.024
S, 0.732 4+ 0.041 0.681 +0.076  0.70240.039 | 0.713 + 0.028
D, 0.730 4 0.042 0.693 +0.055 0.709 4+ 0.036 | 0.716 + 0.032
Ch 0.736 4 0.042 0.680 + 0.067  0.704 4+ 0.041 | 0.716 4+ 0.031

v

esearch lines
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Individual pooling functions

Table 2: Best results of individual runs for models which use individual

functions.

Pooling Positive class AN
Function | Precision Recall F1

AM 0.752 0.788  0.770 0.764
Max 0.797 0.788  0.792 0.794
Min 0.783 0.764  0.773 0.776
Median 0.786 0.823 0.804 0.800
Sum 0.736 0.788  0.761 0.752
S, 0.699 0.847  0.765 0.741
D, 0.755 0.800  0.777 0.770
Ch, 0.789 0.705  0.745 0.758

Modification of information reduction pro Convolutional Neural Net
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Table 3: Mean results for models which make use of CombPool layers.

Pooling Positive class RN
Function Precision Recall F1

AM + Max 0.717 +0.040 0.710 +0.057 0.712+0.038 | 0.713 4+ 0.035
AM + Sum 0.74540.047 0.705+0.0563 0.722 4+ 0.029 | 0.729 + 0.029
AM + Median | 0.745 4+ 0.047 0.705 4+ 0.053  0.722 +0.029 | 0.716 + 0.026
D, + AM 0.738 +0.046  0.707 +£0.050  0.720 + 0.031 | 0.726 4+ 0.030
D, + Median | 0.725+0.042 0.716 +0.052  0.71940.032 | 0.720 + 0.032

cation of information reduction p!

Sior Future research lines

CombPool layers

upna




Introduction Motivation and objectives Discussion of research findings Conclusior Future research lines

CombPool layers

Table 3: Best results of individual runs for models which make use of
CombPool layers.

Pooling Positive class e
Function Precision Recall F1

AM + Max 0.766 0.802 0.784 0.779
AM + Sum 0.787 0.741  0.763 0.770
AM + Median 0.777 0.732  0.754 0.761
D, + AM 0.767 0.776  0.771 0.770
D, + Median 0.790 0.790 0.790 0.790

upna

Modification of information reduction proc Convolutional Neural



Introduction Motive

on and objectives

(a,b)-grouping functions

Discussion of research findings

Conclusic

Future research lines

Table 4: Mean results for models which use (a,b)-grouping functions.

Pooling Positive class Accurac
Function Precision Recall F1 y
Gt 0.758 4 0.078  0.563 + 0.132  0.633 £ 0.094 | 0.684 + 0.05
G? 0.801 +0.056  0.472+0.059  0.577 +0.112 | 0.673 + 0.049
Glad), 0.796 + 0.187  0.375+0.191  0.479 + 0.220 | 0.640 + 0.076
Awgﬁmawq 0.808 + 0.063 0.480 + 0.148  0.585 + 0.112 | 0.678 + 0.050
44uﬁgﬁ;‘0;ﬁ» 0.487 +£0.086  0.829+0.206 0.607 +0.112 | 0.479 +0.116
maz;Sop
AW(("‘[’) ) 0.424 +0.208 0.695 + 0.371  0.515 + 0.250 | 0.492 + 0.114

V(a,b)
Gmaz,G

ob

.G

(a,b)*
Gmaz
a,b)x
Gi]eo?n

C(;a,b)*

Tprod

0.766 + 0.078
0.796 £ 0.187
0.446 + 0.246

0.530 4 0.154
0.375 4 0.191
0.687 + 0.364

0.610 £ 0.112
0.479 4+ 0.221
0.507 4 0.246

0.679 4+ 0.053
0.644 + 0.077
0.490 + 0.105

upna
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(a,b)-grouping functions

Table 4: Best results of individual runs for models which use (a,b)-grouping

functions.

Pooling Positive class e—

Function Precision  Recall F1 y

Glad) 0.820 0.717  0.767 0.782

el 0.880 0.694  0.776 0.800

Gleon 0514  1.000 0.679 | 0.529

Aw'eb 0.835 0.717  0.772 0.788
(Gmaz>Ggeom)

AV[/’}(",:Z,» Gl 0.615 1.000  0.762 0.641

AW e | 0732 1.000 0.845 | 0.817
(ESRESP €D

Gl 0.780 0.752  0.766 0.770

Gt 0.857 0.705  0.774 0.794

G;jjf(’l* 1.000 0.624  0.768 0.812
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Global Pool layers

Table 5: Mean results for models which replace Global Average Pooling by
other aggregation functions or combinations of aggregation functions.

Pooling Positive class AR
Function Precision Recall F1

AM 0.743 £ 0.038 0.697 + 0.057 0.717 +0.032 | 0.726 + 0.026
D, 0.892 +0.055 0.418 £0.127  0.5554+0.113 0.680 + 0.049
Ch,, 0.891 £ 0.061  0.453 +£0.123  0.587 £ 0.101 0.694 £ 0.045
Median 0.849 +0.118 0.393 +£0.228  0.488 +0.213 | 0.648 4+ 0.0785
AM + Max 0.830 £ 0.068 0.585+0.117 0.6744+0.076 | 0.726 + 0.037
AM + Sum 0.918 £ 0.058 0.3834+0.115  0.527 £ 0.101 0.669 4 0.040
AM + Median | 0.90 +0.059  0.384 +0.128  0.524 + 0.120 0.668 + 0.048
D, + AM 0.895+0.053 0.415+0.154  0.546 4+ 0.148 0.679 £ 0.058
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Summary of paper 3

e Combining the arithmetic mean with other pooling operators
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Summary of paper 3

e Combining the arithmetic mean with other pooling operators
improves performance

e Effect similar to residual connections!

e Replacing the arithmetic mean in Global Pooling is complex
® A correct gradient flow is critical for the optimization.

e Exploiting chest x-ray data is a hard task.
® Benchmarking models against real-world datasets is important.
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Conclusion

e Monotonicity (increasingness) is important for feature fusion
® We introduce a method to construct new increasing functions
combining multiple operators.
e Preserving (or accentuating) high activations improves model
performance:

® (a,b)-grouping functions can outperform classic operators.

e Chest X-ray imaging prediction is a complex task to solve
through CNN analysis:

® Below optimal results obtained with our modifications.
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Sets and Systems, 323, 1-18
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e |mproving upon Global Average pooling is non-trivial
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method for multi-valued data. Information Fusion, 71, 1-10.
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(2024). Extremal values-based aggregation functions. Fuzzy Sets and Systems, 493, 109097.




Introductio Motivation and objectives Discussion of research findings Conclusic Future research lines

Future lines (1)

e Improving upon Global Average pooling is non-trivial
® Could other averaging functions be used?

12Papéo, M., Rodriguez-Martinez, I., Fumanal-ldocin, J,, Altalhi, A. H.,, & Bustince, H. (2021). A fusion

method for multi-valued data. Information Fusion, 71, 1-10.

BHalaé, R., Mesiar, R, Kolesarova, A, Saadati, R, Herrera, F, Rodriguez-Martinez, I, & Bustince, H. upna
(2024). Extremal values-based aggregation functions. Fuzzy Sets and Systems, 493, 109097.




Introductio Motivation and objectives Discussion of research findings Conclusic Future research lines

Future lines (1)

e Improving upon Global Average pooling is non-trivial

® Could other averaging functions be used?
® Moderate-deviation functions have offered good results™

12Papéo, M., Rodriguez-Martinez, I., Fumanal-ldocin, J,, Altalhi, A. H.,, & Bustince, H. (2021). A fusion

method for multi-valued data. Information Fusion, 71, 1-10.

BHalaé, R., Mesiar, R, Kolesarova, A, Saadati, R, Herrera, F, Rodriguez-Martinez, I, & Bustince, H. upna
(2024). Extremal values-based aggregation functions. Fuzzy Sets and Systems, 493, 109097.

tion of informatic n utional Neur



ch findings Conclusic Future research lines

Introduction

Future lines (1)

e Improving upon Global Average pooling is non-trivial

® Could other averaging functions be used?
® Moderate-deviation functions have offered good results™

e Further exploit the importance of high activations

12Papéo, M., Rodriguez-Martinez, I., Fumanal-ldocin, J,, Altalhi, A. H.,, & Bustince, H. (2021). A fusion

method for multi-valued data. Information Fusion, 71, 1-10.

BHalaé, R., Mesiar, R, Kolesarova, A, Saadati, R, Herrera, F, Rodriguez-Martinez, I, & Bustince, H. upna
(2024). Extremal values-based aggregation functions. Fuzzy Sets and Systems, 493, 109097.

on of informatic on lutional



ch findings Conclusic Future research lines

Introduction

Future lines (1)

e Improving upon Global Average pooling is non-trivial

® Could other averaging functions be used?

® Moderate-deviation functions have offered good results™
e Further exploit the importance of high activations

e Define further aggregations based on extremal values™.
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e Improving upon Global Average pooling is non-trivial

® Could other averaging functions be used?
® Moderate-deviation functions have offered good results™

e Further exploit the importance of high activations

® Define further aggregations based on extremal values™.

® Replace other feature fusion processes

MPapéo, M., Rodriguez-Martinez, I., Fumanal-ldocin, J,, Altalhi, A. H., & Bustince, H. (2021). A fusion

method for multi-valued data. Information Fusion, 71, 1-10.
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